

Finanziato dall'Unione europea NextGenerationEU

CrypTO Conference 2025 - May 23, 2025

A Revision of CROSS Security: Proofs and Attacks for Multi-Round Fiat-Shamir Signatures

Edoardo Signorini

Joint work with Michele Battagliola, Federico Pintore, Riccardo Longo, and Giovanni Tognolini

CROSS

The scheme:

- Code-based signature scheme.
- Second round candidate in NIST on-ramp standardization call.
- Zero-Knowledge protocol + Fiat-Shamir transform.
- Well-known protocol based on decoding random oracle (with restricted errors).
- Standard optimization techniques.
- Competitive public-keys size and fast execution.

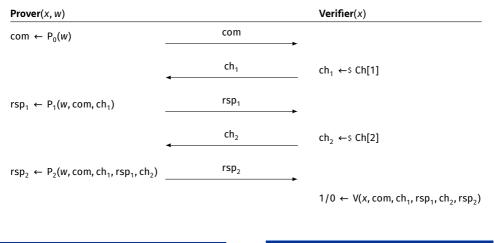
CROSS

The scheme:

- Code-based signature scheme.
- Second round candidate in NIST *on-ramp* standardization call.
- Zero-Knowledge protocol + Fiat-Shamir transform.
- Well-known protocol based on decoding random oracle (with restricted errors).
- Standard optimization techniques.
- Competitive public-keys size and fast execution.

Our contribution:

- Formal security proof for CROSS.
 - EUF-CMA security of Fiat-Shamir transform for special-sound multi-round proofs.
- Novel forgery attack.
 - Improves upon previous attack by Kales and Zaverucha.¹
 - Security loss up to 24% in worst case.

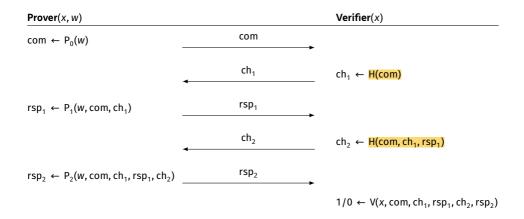


¹Kales and Zaverucha. "An Attack on Some Signature Schemes Constructed from Five-Pass Identification Schemes". CANS 20.

(Multi-Round) Interactive Proofs

A binary relation is a set $R = \{(x, w)\}$ of statement-witness pairs.

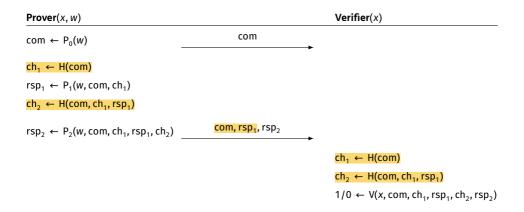
Goal


Prove the knowledge of a witness *w* for a public statement *x*.

Digital Signature

We can obtain a digital signature by applying the Fiat-Shamir transform.

Fiat-Shamir Transform


Transform any public-coin interactive proof into a *non-interactive* proof in the random oracle model.

Fiat-Shamir Transform

Transform any public-coin interactive proof into a *non-interactive* proof in the random oracle model.

Idea: replace the challenge from the verifier with the output of a random oracle on the current transcript (add a message to obtain a signature-scheme).

Properties

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Zero-knowledge

No information about *w* is revealed. Usually enough to prove Honest-Verifier Zero-Knowledge.

Knowledge Soundness

Given a dishonest prover P^* with a success probability greater than the knowledge error κ , it is always possible to efficiently extract a witness from P^* .

Properties

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Zero-knowledge

No information about *w* is revealed. Usually enough to prove Honest-Verifier Zero-Knowledge.

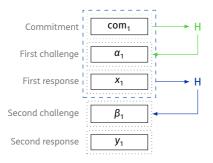
Knowledge Soundness

Given a dishonest prover P^* with a success probability greater than the knowledge error κ , it is always possible to efficiently extract a witness from P^* .

Knowledge soundness is hard to prove in general and is often implied by the simpler notion of special soundness.

Special Soundness

There is an extracting algorithm which can compute a witness given enough accepting transcript relative to a true statement.


Fixed-Weight Repetition of Multi-Round Interactive Proofs

Parallel Repetition

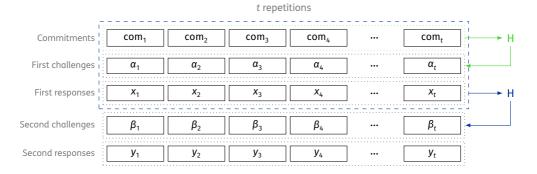
Many protocols have large knowledge error $\kappa \approx 1/2$.

• To build digital signatures, we need the knowledge error to be negligible.

Parallel Repetition

Many protocols have large knowledge error $\kappa \approx 1/2$.

- To build digital signatures, we need the knowledge error to be negligible.
- We can reduce the knowledge error of Π by considering the *t*-fold parallel repetition Π^t of the protocol.


_							· •
Commitments	com ₁	com ₂	com ₃	com ₄]	com _t	H
First challenges	α ₁	α2	α ₃	α ₄]	α _t	
First responses	x ₁	x ₂	X ₃	X 4]	X _t	H
Second challenges	β ₁	β ₂	β ₃	β ₄]	β _t	-
Second responses	y ₁	y ₂	y ₃	y ₄]	y _t	

t repetitions

Parallel Repetition

Many protocols have large knowledge error $\kappa \approx 1/2$.

- To build digital signatures, we need the knowledge error to be negligible.
- We can reduce the knowledge error of Π by considering the t-fold parallel repetition Π^t of the protocol.

Theorem²

If Π is special-sound and has knowledge error κ , then Π^t has knowledge error κ^t .

²Attema and Fehr. "Parallel Repetition of (k1, ..., ku)-Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

Fixed-Weight Repetition

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

Fixed-Weight Repetition

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

(t, ω)-Fixed-Weight Repetition

Repeat the protocol t times, with the last challenge sampled from a space with a fixed large weight ω of favorable challenges.

- \bigcirc Fewer large responses to be sent \implies smaller signature.
- \mathbf{V} More repetitions \implies less efficient signing and verification.

Fixed-Weight Repetition

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

(t, ω) -Fixed-Weight Repetition

Repeat the protocol t times, with the last challenge sampled from a space with a fixed large weight ω of favorable challenges.

- \bigcirc Fewer large responses to be sent \implies smaller signature.
- \mathbf{V} More repetitions \implies less efficient signing and verification.

Theorem³

The (t, ω) -fixed-weight repetition of a special-sound multi-round interactive proof Π is knowledge sound.

³Battagliola, Longo, Pintore, S., and Tognolini. Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Proofs.

EUF-CMA Security Proof for CROSS

Theorem

The Fiat-Shamir transform of a knowledge-sound interactive proof is EUF-CMA secure.

Key steps in the proof:

- 1. Prove security against impersonation under passive attack
- 2. Show that this implies EUF-CMA security with a security loss of at most $\begin{pmatrix} Q \\ \mu \end{pmatrix}$.
 - *Q* is the number of signature queries.
 - 2μ + 1 is the number of rounds.

Since the fixed-weight repetition of a special-sound protocol is knowledge sound, we can apply this result to CROSS.

Attacking the Parallel Repetition

Piecewise Simulatability

Critical property required for the attack:

- An adversary can win by guessing only one of the two challenges.
- Somewhat surprising but true for most protocols.

Piecewise Simulatability

Critical property required for the attack:

- An adversary can win by guessing only one of the two challenges.
- Somewhat surprising but true for most protocols.

Can be formalized with the notion of Piecewise Simulatability:

- Stronger property than HVZK.
- Split the simulator in two algorithms.
- Allows one of the two challenges to be randomly chosen, while the simulator can choose the other challenge and produce a valid transcript.

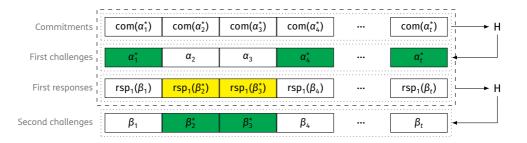
In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

1. Generates new commitment until t^* first challenges a_i are correctly guessed.

Commitments	com(α_1^*)	$com(\alpha_2^*)$	com(α ₃ *)	com(α ₄ *)] •••	$\operatorname{com}(\alpha_t^*)$ –	> H
First challenges	α*	α2	α3	α_4*		α*	

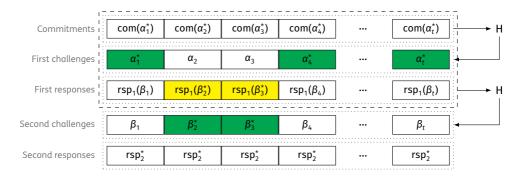
In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:


- 1. Generates new commitment until t^* first challenges α_i are correctly guessed.
- 2. Generates responses rsp_1 until the second challenges β_i are correctly guessed for the remaining $t t^*$ repetitions.

Commitments	com(α_1^*)	com(α ₂ *)	com(<i>a</i> [*] ₃)	com(α ₄ *)]	$com(\alpha_t^*)$	→ H
First challenges	α*	α2	α3	α*		α [*]	•
First responses	$rsp_1(\beta_1)$	rsp ₁ (β ₂ *)	rsp ₁ (β ₃ *)	$rsp_1(\beta_4)$		$rsp_1(\beta_t)$	

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

- 1. Generates new commitment until t^* first challenges α_i are correctly guessed.
- 2. Generates responses rsp_1 until the second challenges β_i are correctly guessed for the remaining $t t^*$ repetitions.

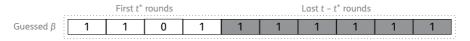


In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

- 1. Generates new commitment until t^* first challenges α_i are correctly guessed.
- 2. Generates responses rsp_1 until the second challenges β_i are correctly guessed for the remaining $t t^*$ repetitions.

Compute final responses rsp₂.

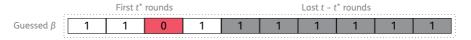
Attacking the Fixed-Weight Repetition



In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2.

In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2. **Previous strategy**:

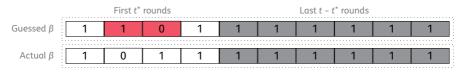
- CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the second round.
 - The second challenge is guessed with the same weight as the actual challenge.


Example with $t = 10, \omega = 9$:

In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2. **Previous strategy**:

- CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the second round.
 - The second challenge is guessed with the same weight as the actual challenge.

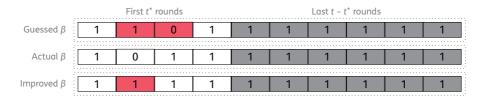
Example with $t = 10, \omega = 9$:



In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2. **Previous strategy**:

- CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the second round.
 - The second challenge is guessed with the same weight as the actual challenge.
- This strategy is optimal only when $\omega \approx t/2$.

Example with $t = 10, \omega = 9$:



In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2. **Previous strategy**:

- CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the second round.
 - The second challenge is guessed with the same weight as the actual challenge.
- This strategy is optimal only when $\omega \approx t/2$.

Improved strategy:

- Select at least $\omega^* \ge \omega$ positions where attacker expects the special challenge.
- When $\omega \approx t$, choosing more than ω positions gives better results.
 - Making mistakes in a few positions is more efficient than trying to guess perfectly.

Example with t = 10, $\omega = 9$, $\omega^* = 10$:

Novel Forgery

Two phases in our improved attack:

- 1. Try to guess the first challenges α_i for at least t^* parallel executions.
- 2. Try to guess the second challenge for remaining fixed-weight executions.
 - **Key improvement**: Select $\omega^* \ge \omega$ positions for the fixed-weight element.

Still requires piecewise simulatability (similar to Kales-Zaverucha attack).

Novel Forgery

Two phases in our improved attack:

- 1. Try to guess the first challenges α_i for at least t^* parallel executions.
- 2. Try to guess the second challenge for remaining fixed-weight executions.
 - **Key improvement**: Select $\omega^* \ge \omega$ positions for the fixed-weight element.

Still requires piecewise simulatability (similar to Kales-Zaverucha attack).

Choosing attack parameters:

- The choice of *t*^{*} depends on the size of the challenge sets.
 - Ideally, phase 1 should have a similar cost to phase 2.
- The choice of ω^* depends on the choice of ω relative to *t*.
 - The attack is most effective for very unbalanced parameters.

Impact on CROSS Parameters

Significant security reduction for balanced and small paramete	r sets!
--	---------

Parameter Set		t	ω	Forgery Cost	Loss
CROSS-R-SDP 1	balanced	252	212	120	6%
CROSS-R-SDF 1	small	960	938	97	24%
CROSS-R-SDP 3	balanced	398	340	180	6%
CK055-K-5DF 5	small	945	907	156	19%
CROSS-R-SDP 5	balanced	507	427	241	6%
	small	968	912	217	15%
CROSS-R-SDP(G) 1	balanced	243	206	123	4%
	small	871	850	108	15%
CROSS-R-SDP(G) 3	balanced	255	176	190	1%
	small	949	914	168	13%
CROSS-R-SDP(G) 5	balanced	356	257	253	1%
	small	996	945	229	11%

Detailed cost analysis: https://github.com/edoars/revise-cross-parameters.

Conclusions

Main results:

- Proved EUF-CMA security of CROSS.
- Presented a novel forgery attack for the fixed-weight repetition of q2-identification schemes.
- Showed significant security reductions for CROSS parameter sets.
 - Fast variant: $\omega \approx t/2$, maintains security.
 - Balanced and small variants: ω close to t, vulnerable.
 - For small variant, security loss up to 24%.

Implications:

- Fixed-weight parameters for CROSS re-chosen for round 2.
- The underlying hard problem is not affected.

Future work:

- Proving optimality of our attack.
- Investigating alternative schemes with different security properties (e.g., early abort).

Full paper:

Thank you!

