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CROSS

The scheme:• Code-based signature scheme.• Second round candidate in NIST on-ramp standardization call.• Zero-Knowledge protocol + Fiat-Shamir transform.• Well-known protocol based on decoding random oracle (with
restricted errors).• Standard optimization techniques.• Competitive public-keys size and fast execution. cross-crypto.com

Our contribution:• Formal security proof for CROSS.• EUF-CMA security of Fiat-Shamir transform for special-sound multi-round proofs.• Novel forgery attack.• Improves upon previous attack by Kales and Zaverucha.• Security loss up to 24% in worst case.
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(Multi-Round) Interactive Proofs
A binary relation is a set 𝑅 = {(𝑥, 𝑤)} of statement-witness pairs.
Prover(𝑥, 𝑤) Verifier(𝑥)com ← P0(𝑤) comch1 ch1 ←$ Ch[1]rsp1 ← P1(𝑤, com, ch1) rsp1ch2 ch2 ←$ Ch[2]rsp2 ← P2(𝑤, com, ch1, rsp1, ch2) rsp2 1/0 ← V(𝑥, com, ch1, rsp1, ch2, rsp2)
Goal
Prove the knowledge of a witness 𝑤 for a
public statement 𝑥. Digital Signature

We can obtain a digital signature by
applying the Fiat-Shamir transform.
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Fiat-Shamir Transform
Transform any public-coin interactive proof into a non-interactive proof in the random oracle
model.

Prover(𝑥, 𝑤) Verifier(𝑥)com ← P0(𝑤) comch1 ch1 ← H(com)rsp1 ← P1(𝑤, com, ch1) rsp1ch2 ch2 ← H(com, ch1, rsp1)rsp2 ← P2(𝑤, com, ch1, rsp1, ch2) rsp2 1/0 ← V(𝑥, com, ch1, rsp1, ch2, rsp2)

Idea: replace the challenge from the verifier with the output of a random oracle on the current
transcript (add a message to obtain a signature-scheme).
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Properties

Completeness
Honest provers (almost) always succeed in convincing a verifier.

Zero-knowledge
No information about 𝑤 is revealed. Usually enough to prove Honest-Verifier Zero-Knowledge.
Knowledge Soundness
Given a dishonest prover P∗ with a success probability greater than the knowledge error 𝜅, it is
always possible to efficiently extract a witness from P∗.

Knowledge soundness is hard to prove in general and is often implied by the simpler notion of
special soundness.

Special Soundness
There is an extracting algorithm which can compute a witness given enough accepting transcript
relative to a true statement.
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Fixed-Weight Repetition of Multi-Round
Interactive Proofs



Parallel Repetition
Many protocols have large knowledge error 𝜅 ≈ 1/2.• To build digital signatures, we need the knowledge error to be negligible.

• We can reduce the knowledge error of Π by considering the 𝑡-fold parallel repetition Π𝑡 of
the protocol.

com1𝛼1𝑥1𝛽1𝑦1

Commitment

First challenge

First response

Second challenge

Second response

H
H

com2 com3 com4 … com𝑡𝛼2 𝛼3 𝛼4 … 𝛼𝑡𝑥2 𝑥3 𝑥4 … 𝑥𝑡𝛽2 𝛽3 𝛽4 … 𝛽𝑡𝑦2 𝑦3 𝑦4 … 𝑦𝑡

Commitments

First challenges

First responses

Second challenges

Second responses

𝑡 repetitions H
H

Theorem
If Π is special-sound and has knowledge error 𝜅, then Π𝑡 has knowledge error 𝜅𝑡.
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Theorem2

If Π is special-sound and has knowledge error 𝜅, then Π𝑡 has knowledge error 𝜅𝑡.
2Attema and Fehr. “Parallel Repetition of (𝑘1, … , 𝑘𝜇)-Special-Sound Multi-round Interactive Proofs”. CRYPTO 2022, Part I.
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Fixed-Weight Repetition

• When we build signature schemes from interactive protocols, the size of the signature is
typically dominated by the length of the responses.• Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:(𝑡, 𝜔)-Fixed-Weight Repetition
Repeat the protocol 𝑡 times, with the last challenge sampled from a space with a fixed large
weight 𝜔 of favorable challenges.
THUMBS-UP Fewer large responses to be sent ⟹ smaller signature.

THUMBS-DOWN More repetitions ⟹ less efficient signing and verification.

Theorem
The (𝑡, 𝜔)-fixed-weight repetition of a special-sound multi-round interactive proof Π is
knowledge sound.
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Fixed-Weight Repetition

• When we build signature schemes from interactive protocols, the size of the signature is
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There is a standard optimization for this scenario:(𝑡, 𝜔)-Fixed-Weight Repetition
Repeat the protocol 𝑡 times, with the last challenge sampled from a space with a fixed large
weight 𝜔 of favorable challenges.
THUMBS-UP Fewer large responses to be sent ⟹ smaller signature.

THUMBS-DOWN More repetitions ⟹ less efficient signing and verification.

Theorem3

The (𝑡, 𝜔)-fixed-weight repetition of a special-sound multi-round interactive proof Π is
knowledge sound.

3Battagliola, Longo, Pintore, S., and Tognolini. Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Proofs.
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EUF-CMA Security Proof for CROSS

Theorem
The Fiat-Shamir transform of a knowledge-sound interactive proof is EUF-CMA secure.

Key steps in the proof:
1. Prove security against impersonation under passive attack

2. Show that this implies EUF-CMA security with a security loss of at most (𝑄𝜇).• 𝑄 is the number of signature queries.• 2𝜇 + 1 is the number of rounds.
Since the fixed-weight repetition of a special-sound protocol is knowledge sound, we can apply
this result to CROSS.
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Attacking the Parallel Repetition



Piecewise Simulatability

Critical property required for the attack:• An adversary can win by guessing only one of the two challenges.• Somewhat surprising but true for most protocols.

Can be formalized with the notion of Piecewise Simulatability:• Stronger property than HVZK.• Split the simulator in two algorithms.• Allows one of the two challenges to be randomly chosen, while the simulator can choose
the other challenge and produce a valid transcript.
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The Kales-Zaverucha Attack

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the
attack in two independent phases:

1. Generates new commitment until 𝑡∗ first challenges 𝛼𝑖 are correctly guessed.
2. Generates responses rsp1 until the second challenges 𝛽𝑖 are correctly guessed for the
remaining 𝑡 − 𝑡∗ repetitions.

Compute final responses rsp2.

com(𝛼∗1) com(𝛼∗2) com(𝛼∗3) com(𝛼∗4) … com(𝛼∗𝑡 )Commitments 𝛼∗1 𝛼2 𝛼3 𝛼∗4 … 𝛼∗𝑡First challenges

H
rsp1(𝛽1) rsp1(𝛽∗2) rsp1(𝛽∗3) rsp1(𝛽4) … rsp1(𝛽𝑡)First responses 𝛽1 𝛽∗2 𝛽∗3 𝛽4 … 𝛽𝑡Second challenges

H
rsp∗2 rsp∗2 rsp∗2 rsp∗2 … rsp∗2Second responses

9



The Kales-Zaverucha Attack

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the
attack in two independent phases:

1. Generates new commitment until 𝑡∗ first challenges 𝛼𝑖 are correctly guessed.

2. Generates responses rsp1 until the second challenges 𝛽𝑖 are correctly guessed for the
remaining 𝑡 − 𝑡∗ repetitions.

Compute final responses rsp2.

com(𝛼∗1) com(𝛼∗2) com(𝛼∗3) com(𝛼∗4) … com(𝛼∗𝑡 )Commitments 𝛼∗1 𝛼2 𝛼3 𝛼∗4 … 𝛼∗𝑡First challenges

H
rsp1(𝛽1) rsp1(𝛽∗2) rsp1(𝛽∗3) rsp1(𝛽4) … rsp1(𝛽𝑡)First responses 𝛽1 𝛽∗2 𝛽∗3 𝛽4 … 𝛽𝑡Second challenges

H
rsp∗2 rsp∗2 rsp∗2 rsp∗2 … rsp∗2Second responses

9



The Kales-Zaverucha Attack

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the
attack in two independent phases:

1. Generates new commitment until 𝑡∗ first challenges 𝛼𝑖 are correctly guessed.
2. Generates responses rsp1 until the second challenges 𝛽𝑖 are correctly guessed for the
remaining 𝑡 − 𝑡∗ repetitions.

Compute final responses rsp2.

com(𝛼∗1) com(𝛼∗2) com(𝛼∗3) com(𝛼∗4) … com(𝛼∗𝑡 )Commitments 𝛼∗1 𝛼2 𝛼3 𝛼∗4 … 𝛼∗𝑡First challenges

H
rsp1(𝛽1) rsp1(𝛽∗2) rsp1(𝛽∗3) rsp1(𝛽4) … rsp1(𝛽𝑡)First responses 𝛽1 𝛽∗2 𝛽∗3 𝛽4 … 𝛽𝑡Second challenges

H
rsp∗2 rsp∗2 rsp∗2 rsp∗2 … rsp∗2Second responses

9



The Kales-Zaverucha Attack

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the
attack in two independent phases:

1. Generates new commitment until 𝑡∗ first challenges 𝛼𝑖 are correctly guessed.
2. Generates responses rsp1 until the second challenges 𝛽𝑖 are correctly guessed for the
remaining 𝑡 − 𝑡∗ repetitions.

Compute final responses rsp2.

com(𝛼∗1) com(𝛼∗2) com(𝛼∗3) com(𝛼∗4) … com(𝛼∗𝑡 )Commitments 𝛼∗1 𝛼2 𝛼3 𝛼∗4 … 𝛼∗𝑡First challenges

H
rsp1(𝛽1) rsp1(𝛽∗2) rsp1(𝛽∗3) rsp1(𝛽4) … rsp1(𝛽𝑡)First responses 𝛽1 𝛽∗2 𝛽∗3 𝛽4 … 𝛽𝑡Second challenges

H
rsp∗2 rsp∗2 rsp∗2 rsp∗2 … rsp∗2Second responses

9



The Kales-Zaverucha Attack

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the
attack in two independent phases:

1. Generates new commitment until 𝑡∗ first challenges 𝛼𝑖 are correctly guessed.
2. Generates responses rsp1 until the second challenges 𝛽𝑖 are correctly guessed for the
remaining 𝑡 − 𝑡∗ repetitions.

Compute final responses rsp2.
com(𝛼∗1) com(𝛼∗2) com(𝛼∗3) com(𝛼∗4) … com(𝛼∗𝑡 )Commitments 𝛼∗1 𝛼2 𝛼3 𝛼∗4 … 𝛼∗𝑡First challenges

H
rsp1(𝛽1) rsp1(𝛽∗2) rsp1(𝛽∗3) rsp1(𝛽4) … rsp1(𝛽𝑡)First responses 𝛽1 𝛽∗2 𝛽∗3 𝛽4 … 𝛽𝑡Second challenges

H
rsp∗2 rsp∗2 rsp∗2 rsp∗2 … rsp∗2Second responses

9



Attacking the Fixed-Weight Repetition



Intuition
In the following we will restrict to 𝑞2-interactive proofs. In particular |Ch[1]| = 𝑞 and |Ch[2]| = 2.

Previous strategy:

• CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the
second round.

• The second challenge is guessed with the same weight as the actual challenge.

• This strategy is optimal only when 𝜔 ≈ 𝑡/2.
Improved strategy:• Select at least 𝜔∗ ≥ 𝜔 positions where attacker expects the special challenge.• When 𝜔 ≈ 𝑡, choosing more than 𝜔 positions gives better results.

• Making mistakes in a few positions is more efficient than trying to guess perfectly.

Example with 𝑡 = 10, 𝜔 = 9:
1 1 0 1 1 1 1 1 1 1Guessed 𝛽 First 𝑡∗ rounds Last 𝑡 − 𝑡∗ rounds
1 0 1 1 1 1 1 1 1 1Actual 𝛽 1 1 1 1 1 1 1 1 1 1Improved 𝛽
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Novel Forgery

Two phases in our improved attack:

1. Try to guess the first challenges 𝛼𝑖 for at least 𝑡∗ parallel executions.
2. Try to guess the second challenge for remaining fixed-weight executions.• Key improvement: Select 𝜔∗ ≥ 𝜔 positions for the fixed-weight element.

Still requires piecewise simulatability (similar to Kales-Zaverucha attack).

Choosing attack parameters:• The choice of 𝑡∗ depends on the size of the challenge sets.• Ideally, phase 1 should have a similar cost to phase 2.• The choice of 𝜔∗ depends on the choice of 𝜔 relative to 𝑡.• The attack is most effective for very unbalanced parameters.
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Impact on CROSS Parameters

Significant security reduction for balanced and small parameter sets!

Parameter Set 𝑡 𝜔 Forgery Cost LossCROSS-R-SDP 1 balanced 252 212 120 6%
small 960 938 97 24%CROSS-R-SDP 3 balanced 398 340 180 6%
small 945 907 156 19%CROSS-R-SDP 5 balanced 507 427 241 6%
small 968 912 217 15%CROSS-R-SDP(G) 1 balanced 243 206 123 4%
small 871 850 108 15%CROSS-R-SDP(G) 3 balanced 255 176 190 1%
small 949 914 168 13%CROSS-R-SDP(G) 5 balanced 356 257 253 1%
small 996 945 229 11%

Detailed cost analysis: https://github.com/edoars/revise-cross-parameters.
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Conclusions

Main results:• Proved EUF-CMA security of CROSS.• Presented a novel forgery attack for the fixed-weight
repetition of q2-identification schemes.• Showed significant security reductions for CROSS parameter
sets.• Fast variant: 𝜔 ≈ 𝑡/2, maintains security.• Balanced and small variants: 𝜔 close to 𝑡, vulnerable.• For small variant, security loss up to 24%.

Implications:• Fixed-weight parameters for CROSS re-chosen for round 2.• The underlying hard problem is not affected.

Future work:• Proving optimality of our attack.• Investigating alternative schemes with different security
properties (e.g., early abort).

ia.cr/2025/127

Full paper:
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Thank you!
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